The Richard Stockton College of New J ersey Mathematical Mayhem 2014
 Individual Round - Solutions

March 22, 2014

Name: \qquad
High School: \qquad

Instructions:

- This round consists of $\mathbf{1 8}$ problems worth a total of $\mathbf{8 0}$ points, made up of $\mathbf{8}$ Appetizers worth 3 points each, 7 Entrées worth 5 points each, and 3 Desserts worth 7 points each.
- Each of the 18 problems is multiple choice, and each problem comes with $\mathbf{5}$ possible answers.
- For each problem, circle the best answer.
- You are not required to show any work this round.
- No calculators are permitted.
- This round is $\mathbf{7 5}$ minutes long. Good Luck!

OFFICIAL USE ONLY:

Problem \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Total
Points Earned																			

\% Appetizers \&

Problem 1. The value of $-1+2-4+8-16-32+64$ is
(A.) -69
(B.) 21
(C.) 26
(D.) 79
(E.) 127

Problem 2. The expression $\left({ }^{\sqrt{ }} \overline{100}+{ }^{\sqrt{ }} \overline{9}\right) \times\left({ }^{\sqrt{ }} \overline{100}-{ }^{\sqrt{ }} \overline{9}\right)$ is equal to
(A.) 91
$\begin{array}{ll}\text { (B.) } 19 & \text { (C.) } 9991\end{array}$
(D.) 9919
(E.) 10991

Problem 3. If 64 is divided into three parts proportional to 2,4 , and 6 , the smallest part is
(A.) $5 \frac{1}{3}$
(B.) 11
(C.) $10 \frac{2}{3}$
(D.) 5
(E.) none of these answers

- Entrées *

Problem 9. Mathematical Mayhem occurs each year in March. In 40 consecutive months, what is the largest number of Mathematical Mayhem contests that could be held?
(A.) 1
(B.) 2
(C.) 3
(D.) 4
(E.) 5

Problem 10. If m men can do a job in d days, then $m+r$ men can do the job in
(A.) $d+r$ days
(B.) $d-r$ days
(C.) $\frac{d}{m+r}$ days
(D.) $\frac{m d}{m+r}$ days
(E.) $\frac{m}{m+r}$ days

Problem 11. In the base 10 addition shown below, the letters X, Y, and Z each represent a different non-zero digit (i.e. they are each an integer between 1 and 9). The digit X is
(A.) 1
(B.) 2
(C.) 7
(D.) 8
(E.) 9

$$
\begin{array}{r}
X X Y \\
Y Y Y \\
+ \\
\hline Z
\end{array}
$$

Problem 12. The side, front, and bottom faces of a rectangular box have surface areas 12 square inches,

\checkmark Desserts

Problem 16. How many real numbers satisfy the equation $\left(x^{2}+2 x\right)^{\left(x^{2}-3 x+2\right)}=1$?
(A.) none
(B.) 2
(C.) 4
(D.) 5
(E.) infinitely many

Problem 17. Your hungry brother puts $1 / 4$ th of a pizza, with radius 7 inches, on a circular plate. The plate is exactly large enough to hold this oversized "piece" of pizza, as shown in the figure below. What fraction of the plate is covered by the "piece" of pizza? $\sqrt{ }$
(A.) $1 / 4$
(B.) $1 / 3$
(C.) $1 / 2$
(D.) $2 / 3$
(E.) $\overline{2} / 2$

 many \&'s will appear in the first 2014 symbols?
(A.) 61
(B.) 62
(C.) 63
(D.) 64
(E.) 65

