The Richard Stockton College of New Jersey Mathematical Mayhem 2013 Group Round

March 23, 2013

Name:			
N a wara			
Name:			
Name:			
High Scho	ol:		

Instructions:

- This round consists of **5** problems worth **16** points each for a total of **80** points.
- Each of the 5 problems is free response.
- Write your complete solution in the space provided including all supporting work.
- No calculators are permitted.
- This round is 75 minutes long. Good Luck!

OFFICIAL USE ONLY:

Problem #	1	2	3	4	5	Total
Points Earned						

Group Round

Problem 1. A polyomino is a contiguous shape formed by gluing together squares edge to edge. A polyomino made up of 4 squares is called a tetromino. There are 5 different tetrominoes, as shown below.

Flipping or rotating a tetromino does not make it a different tetromino. For instance, the four tetrominoes shown below are all considered to be the same tetromino.

A polynomino made up of 5 squares is called a pentomino. How many different pentominoes are there?

Solution to Question 1. There are 12 pentominoes, pictured below.

Problem 3. How many total squares are there in a 100 a n grid? For example, there are 5 squares in the 2

100 grid? How many total squares are there in 2 grid shown below.

Solution to Question 3. The number of squares in an *n* grid is the sum

$$1^{2} + 2^{2} + \dots + (n - 1)^{2} + n^{2} = \boxed{\frac{n(n + 1)(2n + 1)}{6}}.$$

For n = 100, this is 338350.

Problem 4.

(A.) When I sum five numbers in every possible pair combination, I get the values:

What are the original 5 numbers?

(B.) When I sum a different set of five numbers in every possible group of 3, I get the values:

0, 3, 4, 8, 9, 10, 11, 12, 14, 19.

What are the original 5 numbers?

(C.) Is it possible to find a set of 5 numbers that when summed in every possible pair combination results in the sums

1, 2, 3, 4, 5, 6, 7, 8, 9, 10?

Is it possible to find a set of 5 numbers that when summed in every possible group of 3 results in those sums? For each situation, find an example or prove it's impossible.

Solution to Question 4.

(A.) The sum of the pairwise sums is 64, and this counts each of the original five numbers four times, so